Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2026
-
Abstract Van der Waals (vdW) ferroelectrics have attracted significant attention for their potential in next-generation nano-electronics. Two-dimensional (2D) group-IV monochalcogenides have emerged as a promising candidate due to their strong room temperature in-plane polarization down to a monolayer limit. However, their polarization is strongly coupled with the lattice strain and stacking orders, which impact their electronic properties. Here, we utilize four-dimensional scanning transmission electron microscopy (4D-STEM) to simultaneously probe the in-plane strain and out-of-plane stacking in vdW SnSe. Specifically, we observe large lattice strain up to 4% with a gradient across ~50 nm to compensate lattice mismatch at domain walls, mitigating defects initiation. Additionally, we discover the unusual ferroelectric-to-antiferroelectric domain walls stabilized by vdW force and may lead to anisotropic nonlinear optical responses. Our findings provide a comprehensive understanding of in-plane and out-of-plane structures affecting domain properties in vdW SnSe, laying the foundation for domain wall engineering in vdW ferroelectrics.more » « less
-
The precise controllability of the Fermi level is a critical aspect of quantum materials. For topological Weyl semimetals, there is a pressing need to fine-tune the Fermi level to the Weyl nodes and unlock exotic electronic and optoelectronic effects associated with the divergent Berry curvature. However, in contrast to two-dimensional materials, where the Fermi level can be controlled through various techniques, the situation for bulk crystals beyond laborious chemical doping poses significant challenges. Here, we report the milli-electron-volt (meV) level ultra-fine-tuning of the Fermi level of bulk topological Weyl semimetal tantalum phosphide using accelerator-based high-energy hydrogen implantation and theory-driven planning. By calculating the desired carrier density and controlling the accelerator profiles, the Fermi level can be experimentally fine-tuned from 5 meV below, to 3.8 meV below, to 3.2 meV above the Weyl nodes. High-resolution transmission electron microscopy reveals the crystalline structure is largely maintained under irradiation, while electrical transport indicates that Weyl nodes are preserved and carrier mobility is also largely retained. Our work demonstrates the viability of this generic approach to tune the Fermi level in semimetal systems and could serve to achieve property fine-tuning for other bulk quantum materials with ultrahigh precision.more » « less
-
Achieving large-size two-dimensional (2D) crystals is key to fully exploiting their remarkable functionalities and application potentials. Chemical vapor deposition growth of 2D semiconductors such as monolayer MoS 2 has been reported to be activated by halide salts, for which various investigations have been conducted to understand the underlying mechanism from different aspects. Here, we provide experimental evidence showing that the MoS 2 growth dynamics are halogen dependent through the Brønsted-Evans-Polanyi relation, based on which we build a growth model by considering MoS 2 edge passivation by halogens, and theoretically reproduce the trend of our experimental observations. These mechanistic understandings enable us to further optimize the fast growth of MoS 2 and reach record-large domain sizes that should facilitate practical applications.more » « less
-
Abstract Thin ferroelectric materials hold great promise for compact nonvolatile memory and nonlinear optical and optoelectronic devices. Herein, an ultrathin in‐plane ferroelectric material that exhibits a giant nonlinear optical effect, group‐IV monochalcogenide SnSe, is reported. Nanometer‐scale ferroelectric domains with ≈90°/270° twin boundaries or ≈180° domain walls are revealed in physical‐vapor‐deposited SnSe by lateral piezoresponse force microscopy. Atomic structure characterization reveals both parallel and antiparallel stacking of neighboring van der Waals ferroelectric layers, leading to ferroelectric or antiferroelectric ordering. Ferroelectric domains exhibit giant nonlinear optical activity due to coherent enhancement of second‐harmonic fields and the as‐resulted second‐harmonic generation was observed to be 100 times more intense than monolayer WS2. This work demonstrates in‐plane ferroelectric ordering and giant nonlinear optical activity in SnSe, which paves the way for applications in on‐chip nonlinear optical components and nonvolatile memory devices.more » « less
An official website of the United States government
